- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ozdemir, Erdem (2)
-
Anderson, Jonathan (1)
-
Arbogast, Augustus W (1)
-
Asadi, Mohammad Javad (1)
-
Bank, Seth R (1)
-
Borrely, Thales (1)
-
Casamento, Joseph A (1)
-
Choi, Sukwon (1)
-
Cooper, Joshua_J P (1)
-
Dey, Tuhin (1)
-
Fabi, Gianluca (1)
-
Fay, Patrick (1)
-
Goldman, Rachel S (1)
-
Holtz, Mark W (1)
-
Hwang, James C. (1)
-
Kang, Kyuhwe (1)
-
Li, Lei (1)
-
Maria, Jon-Paul (1)
-
McIlwaine, Nathaniel S (1)
-
Meng, Qian (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 28, 2025
-
Dey, Tuhin; Arbogast, Augustus W; Meng, Qian; Reza, Md Shamim; Muhowski, Aaron J; Cooper, Joshua_J P; Ozdemir, Erdem; Naab, Fabian U; Borrely, Thales; Anderson, Jonathan; et al (, Journal of Applied Physics)GeSnC alloys offer a route to direct bandgap semiconductors for CMOS-compatible lasers, but the use of CBr4 as a carbon source was shown to reduce Sn incorporation by 83%–92%. We report on the role of thermally cracked H in increasing Sn incorporation by 6x–9.5x, restoring up to 71% of the lost Sn, and attribute this increase to removal of Br from the growth surface as HBr prior to formation of volatile groups such as SnBr4. Furthermore, as the H flux is increased, Rutherford backscattering spectroscopy reveals a monotonic increase in both Sn and carbon incorporation. X-ray diffraction reveals tensile-strained films that are pseudomorphic with the substrate. Raman spectroscopy suggests substitutional C incorporation; both x-ray photoelectron spectroscopy and Raman suggest a lack of graphitic carbon or its other phases. For the lowest growth temperatures, scanning transmission electron microscopy reveals nanovoids that may account for the low Sn substitutional fraction in those layers. Conversely, the sample grown at high temperatures displayed abrupt interfaces, notably devoid of any voids, tin, or carbon-rich clusters. Finally, the surface roughness decreases with increasing growth temperature. These results show that atomic hydrogen provides a highly promising route to increase both Sn and C to achieve a strongly direct bandgap for optical gain and active silicon photonics.more » « less
-
Li, Lei; Reyes, Steve; Asadi, Mohammad Javad; Wang, Xiaopeng; Fabi, Gianluca; Ozdemir, Erdem; Wu, Weifeng; Fay, Patrick; Hwang, James C. (, 2023 100th ARFTG Microwave Measurement Conference (ARFTG))Currently, lacking suitable test structures, little data exist for the permittivity of hexagonal materials such as GaN and SiC at millimeter-wave frequencies, especially for the extraordinary permittivity ε || as opposed to the ordinary permittivity ε ⊥ . This paper demonstrates for the first time that it is possible to characterize ε || of c-axis 4H SiC using on-wafer measurements of substrate-integrated-waveguide resonators. In fact, measurements on eleven resonators yield a relative ε || of 10.27 ± 0.03 and a loss tangent tanδ<0.02 over the D band (110-170 GHz). The on-wafer measurements of resonators and other devices fabricated on the same SiC substrate can allow material property to be closely correlated with device performance. The present approach can be extended to materials of other types and orientations.more » « less
An official website of the United States government
